Short circuit current is calculated according to IEC 60909 Standard. However, in the standard there will be some statements related to short circuit current, such as prospective short circuit current, initial symmetrical short circuit current,  peak short circuit current, breaking current, steady state current, dc component of the short circuit current. It could be more correct to say which current we mention.

Short circuit currents can be calculated on the faulted bus. IEC 60909 includes equations to calculate impedance  of power system components, and short circuit analysis is carried out by impedance and currents. 

Below is the straightforward example to calculate short circuit current. A generator is connected to transformer and there are faults on 10 kV and 0.38 kV buses. We will find the impedance of the generator and transformer in case of short circuited, and then using the impedances, initial symmetrical short circuit currents based on bus voltage level can be calculated. After the initial symmetrical short circuit currents, peak current, breaking current, steady state current and dc components will be obvious.

Given data for the equipments can be calculated from vendor, equipment datasheet or manufacturer. IEC 60909-2 gives some sample values for the components'  impedance in complex number form.

 




Short Circuit Calculation




F1 Fault 10 kV

Generator reactance equation comes from IEC 60909.

Reactance equals to subtransient reactance

X_d^{''} = \frac{{x_d^{''}}}{{100\% }}.\frac{{{U_{rG}}^2}}{{{S_{rG}}}}

X_d^{''} = \frac{{0,16}}{{100\% }}.\frac{{{{10}^2}}}{{48}} = 0,3333\Omega

If the condition is;

{S_{rG}} < 100MVA ( rated apperent power of generator)

{U_{rG}} > 1kV  ( rated voltage of generator)

then, fictitious resistance value will be obtained. 

{R_{Gf}} = 0,07.X_d^{''}

{R_{Gf}} = 0,07.0,3333 = 0,02333\Omega


Correction factor for generator has to be calculated.

{K_G} = \frac{{{U_n}}}{{{U_{rG}}}}.\frac{{{c_{\max }}}}{{1 + x_d^{''}.\sqrt {1 - {{\cos }^2}{\varphi _{rG}}} }}

{K_G} = \frac{{10}}{{10}}.\frac{{1,1}}{{1 + 0,16.\sqrt {1 - 0,{9^2}} }} = 1,02828

Armature Resistance of Generator:

{R_{Gf}} = {R_a}

Fictitious resistance equals to armature resistance   

\frac{{X_d^{''}}}{{{R_a}}} = \frac{{0,3333}}{{0,0233}} = 14,2587

Generator impedance is written down in complex number.

{\underline Z _G} = 0,0233 + j0,3333\Omega


Corrected generator impedance can be calculated with correction factor.

{\underline Z _{GK}} = {K_G}({R_a} + j{X_d}'')

{\underline Z _{GK}} = 1,02828(0,0233 + jX0,3333)\Omega

Impedance at F1 fault location 10 kV bus 


{\underline Z _{GK}} = {\underline Z _{kF1}} = 0,023993 + j0,342762\Omega


Initial symmetrical short circuit current for F1 fault 10 kV (Un) bus

Since faulted bus is 10 kV, impedance at 10 kV of components is used.

I_k^{''} = \frac{{c{U_n}}}{{\sqrt 3 {Z_k}}} = \frac{{c{U_n}}}{{\sqrt 3 \sqrt {{R_k}^2 + {X_k}^2} }}

I_{kF1}^{''} = \frac{{1,1.10}}{{\sqrt 3 .\sqrt {0,{{023993}^2} + 0,{{342762}^2}} }} = 18,4832kA

For angle, conjugate math operations, 

I_{kF1}^{''} = \frac{{1,1.10}}{{\sqrt 3 .(0,023993 + j0,342762)}} = \frac{{6,350853.(0,023993 - j0,342762)}}{{(0,{{023993}^2} + 0,{{342762}^2})}}

I_{kF1}^{''} = 53,79288.(0,023993 - j0,342762) = 1,290669 - j18,43813kA

\theta  = \arctan \left( {\frac{{ - 18,43813}}{{1,290669}}} \right) =  - 85,9958^\circ



Peak short circuit ({i_p}) current for F1 fault 10 kV bus


\kappa  = 1,02 + 0,98{e^{ - 3R/X}}

{i_p} = \kappa \sqrt 2 {I_k}''

The equations are from IEC 60909. R/X value is needed for peak current.

\frac{{{R_{kF1}}}}{{{X_{kF1}}}} = \frac{{0,023993}}{{0,342762}} = 0,07 (Already found from fictitious resistance equation)


\kappa  = 1,02 + 0,98.{e^{ - 3.(0,07)}} = 1,8143

{i_p} = 1,8143.\sqrt 2 .18,483 = 47,426kA


Breaking Current for F1 fault 10 kV bus

{I_b} = \mu .I_{k\max }^{''}

Time value is choosen. If the time value is choosen as 0,1 s,  "\mu" equation will be definite.


t = 0,10s
\mu  = 0,62 + 0,72{e^{ - 0,32I_{kG}^{''}/{I_{rG}}}}

However, currents related to generator is needed. Rated generator current can be calculated easily from 
traditional power formula. 


{I_{rG}} = \frac{{{S_{rG}}}}{{\sqrt 3 .{U_{rG}}}}

{I_{rG}} = \frac{{48}}{{\sqrt 3 .10}} = 2,77128kA

Initial symmetrical current on 10 kV will be rated generator current. As there is no other elements contribution to fault current on the 10 kV bus.

I_{kF1}^{''} = I_{kG}^{''} = 18,483kA


\frac{{I_{kG}^{''}}}{{{I_{rG}}}} = \frac{{18,483}}{{2,7712}} = 6,6695


\mu  = 0,62 + 0,72{e^{ - 0,32.6,6695}} = 0,70519


Breaking current for breaker is now clear.

{I_b}_{F1} = 0,70519.18,483 = 13,0343kA


Steady State Current (Ik) for F1 Fault

{I_{k\max }} = {\lambda _{\max }}.{I_{rG}}


IEC 60909-1 can be used for equation based calculation.


\lambda  = \lambda \max  = \frac{{{u_{f\max }}.\sqrt {1 + 2.{x_{dsat}}.\sin {\varphi _{rG}} + x_{dsat}^2} }}{{{x_{dsat}} - x_d^{''} + (1 + x_d^{''}.\sin {\varphi _{rG}}).{I_{rG}}/I_{kG}^{''}}}



\sin {\varphi _{rG}} = 0,4358


\lambda \max  = \frac{{1,3.\sqrt {1 + 2.1,5.0,4358 + 1,{5^2}} }}{{1,5 - 0,16 + (1 + 0,16.0,4358).2,7712/18,483}} = 1,8496


{I_{kF1}} = 1,8496.2,7712 = 5,1259kA


DC Component of the short circuit current for F1 Fault 


Frequency ( 50 Hz), time 0.1 sn and R/X is now given data. 


{i_{DC}} = \sqrt 2 .I_k^{''}.{e^{ - 2\pi .f.t.R/X}}


{i_{DC}} = \sqrt 2 .18,483.{e^{ - 2\pi .50.0,1.0,07}} = 2,898kA


Asymmetrical Breaking Current for F1 Fault

It is easy to calculate with dc and breaking current putting into IEC formula.

{I_{basyn}} = \sqrt {I_b^2 + i_{DC}^2}


{I_{basyn}} = \sqrt {13,{{0343}^2} + 2,{{898}^2}}  = 13,352kA

F2 Fault (0.38 kV)   

Transformer Impedance based on 0.4 kV ( Note: Bus voltage is 0,38 kV)

{Z_T} = \frac{{{u_{kr}}}}{{100\% }}.\frac{{{U_{rT}}^2}}{{{S_{rT}}}}

{Z_T} = \frac{{0,0715}}{{100\% }}.\frac{{0,{4^2}}}{5} = 0,002288\Omega

Transformer Resistance based on 0.4 kV

{R_T} = \frac{{{P_{krT}}}}{{\frac{{{S_{rT}}^2}}{{{U_{rT}}^2}}}}

{R_T} = \frac{{0,04175}}{{\frac{{{5^2}}}{{0,{4^2}}}}} = 0,0002672\Omega

Relative resistive component ({u_{Rr}}\% ) of the relative impedance ( Z% or {{u_{kr}}}%) 

{u_{Rr}} = \frac{{{P_{krT}}}}{{{S_{rT}}}}.100\%

{u_{Rr}} = \frac{{0,04175}}{5} = 0,00835 = 0,835\%

Transformer reactance

{X_T} = \sqrt {{Z_T}^2 - {R_T}^2}

{X_T} = \sqrt {0,{{002288}^2} - 0,{{0002672}^2}}  = 0,002272344\Omega

Relative reactance component of the relative impedance ( Z% or {{u_{kr}}}%) 

{x_T} = \frac{{{X_T}}}{{\left( {\frac{{U_{rT}^2}}{{{S_{rT}}}}} \right)}}

{x_T} = \frac{{0,002272344}}{{\left( {\frac{{0,{4^2}}}{5}} \right)}} = 0,0710

Transformer Correction Factor

{K_T} = 0,95.\frac{{{c_{\max }}}}{{1 + 0,6{x_T}}}

c = 1,05 for low voltage level

{K_T} = 0,95.\frac{{1,05}}{{1 + 0,6.0,0710}} = 0,9567

{\underline Z _{TK}} = {K_T}({R_T} + j{X_T})

{\underline Z _{TK}} = 0,9567(0,0002672 + j0,002272344)

{\underline Z _{TK}} = 0,000256 + j0,002174\Omega

For F2 Fault, fault at F1 location {Z_{kF1}} is transferred to 0.38 kV by using transformer turn ratio square {\textstyle{1 \over {t_r^2}}}


t_r^2 = \frac{{{{10}^2}}}{{0,{4^2}}} = {25^2}

{\underline Z _{kF1@0,38kV}} = \left( {0,023993 + j0,342762} \right).\frac{1}{{{{25}^2}}} = 3,{83.10^{ - 5}} + j0,00055\Omega

Total impedance at F2 fault location


{\underline Z _{kF2}} = {\underline Z _{TK}} + {\underline Z _{kF1@0,38kV}} = 0,0002940 + j0,00272\Omega

Initial symmetrical short circuit current for F2 0,38 kV

I_k^{''} = \frac{{c{U_n}}}{{\sqrt 3 {Z_k}}}

I_{kF2}^{''} = \frac{{1,05.0,38}}{{\sqrt 3 .\sqrt {0,{{0002940}^2} + 0,{{00272}^2}} }} = 84,1266kA


Peak short circuit ({i_p}) current for F2 fault 0,38 kV bus

\frac{{{R_{kF2}}}}{{{X_{kF2}}}} = \frac{{0,0002940}}{{0,00272\Omega }} = 0,1080


\kappa  = 1,02 + 0,98{e^{ - 3.0,1080}} = 1,728

{i_p}_{F2} = 1,728.\sqrt 2 .82,1266 = 205,678kA


Breaking Current for F2 fault  

{I_b}_{F2} = I_{kF2}^{''} = 84,1266kA

Steady State Current (Ik) for F2 Fault

{I_k}_{F2} = I_{kF2}^{''} = 84,1266kA

DC Component of the short circuit current for F2 Fault 

{i_{DC}} = \sqrt 2 .84,1266.{e^{ - 2\pi .50.0,1.0,1080}} = 3,998kA

Asymmetrical Breaking Current for F2 Fault

{I_{basyn}} = 84,2216kA



For udemy course link